Quine Alternatives:
${\alpha}\:\limplies\:{\alpha}$ [${\alpha}$:=${\ltrue}$]
Simplification
Reduced to ${\ltrue}$.
${\alpha}\:\limplies\:{\alpha}$ [${\alpha}$:=${\lfalse}$]
Simplification
Reduced to ${\ltrue}$.
$\Box$ Proposition 1
Quine Alternatives:
${\alpha}\:\limplies\:{\beta}\:\limplies\:{\alpha}$ [${\alpha}$:=${\ltrue}$]
Simplification
Reduced to ${\ltrue}$.
${\alpha}\:\limplies\:{\beta}\:\limplies\:{\alpha}$ [${\alpha}$:=${\lfalse}$]
Simplification
Reduced to ${\ltrue}$.
$\Box$ Proposition 2
Quine Alternatives:
${\alpha}\:\limplies\:({\alpha}\:\limplies\:{\beta})\:\limplies\:{\beta}$ [${\alpha}$:=${\ltrue}$]
Simplification
Instance of Proposition 1: ${\alpha}\:\limplies\:{\alpha}$.
${\alpha}\:\limplies\:({\alpha}\:\limplies\:{\beta})\:\limplies\:{\beta}$ [${\alpha}$:=${\lfalse}$]
Simplification
Reduced to ${\ltrue}$.
$\Box$ Proposition 3
Quine Alternatives:
$({\alpha}\:\limplies\:{\beta})\:\limplies\:({\alpha}\:\limplies\:{\beta}\:\limplies\:{\gamma})\:\limplies\:{\alpha}\:\limplies\:{\gamma}$ [${\alpha}$:=${\ltrue}$]
Simplification
Instance of Proposition 3: ${\alpha}\:\limplies\:({\alpha}\:\limplies\:{\beta})\:\limplies\:{\beta}$.
$({\alpha}\:\limplies\:{\beta})\:\limplies\:({\alpha}\:\limplies\:{\beta}\:\limplies\:{\gamma})\:\limplies\:{\alpha}\:\limplies\:{\gamma}$ [${\alpha}$:=${\lfalse}$]
Simplification
Reduced to ${\ltrue}$.
$\Box$ Proposition 4
Quine Alternatives:
$({\alpha}\:\limplies\:{\beta})\:\limplies\:({\beta}\:\limplies\:{\gamma})\:\limplies\:{\alpha}\:\limplies\:{\gamma}$ [${\alpha}$:=${\ltrue}$]
Simplification
Instance of Proposition 3: ${\alpha}\:\limplies\:({\alpha}\:\limplies\:{\beta})\:\limplies\:{\beta}$.
$({\alpha}\:\limplies\:{\beta})\:\limplies\:({\beta}\:\limplies\:{\gamma})\:\limplies\:{\alpha}\:\limplies\:{\gamma}$ [${\alpha}$:=${\lfalse}$]
Simplification
Reduced to ${\ltrue}$.
$\Box$ Proposition 5
Quine Alternatives:
${\alpha}\,\lor\,{\beta}\:\limplies\:{\lnot}{\alpha}\:\limplies\:{\beta}$ [${\alpha}$:=${\ltrue}$]
Simplification
Reduced to ${\ltrue}$.
${\alpha}\,\lor\,{\beta}\:\limplies\:{\lnot}{\alpha}\:\limplies\:{\beta}$ [${\alpha}$:=${\lfalse}$]
Simplification
Instance of Proposition 1: ${\alpha}\:\limplies\:{\alpha}$.
$\Box$ Proposition 6
Quine Alternatives:
$({\alpha}\:\limplies\:{\beta})\:\limplies\:({\lnot}{\alpha}\:\limplies\:{\beta})\:\limplies\:{\beta}$ [${\beta}$:=${\ltrue}$]
Simplification
Reduced to ${\ltrue}$.
$({\alpha}\:\limplies\:{\beta})\:\limplies\:({\lnot}{\alpha}\:\limplies\:{\beta})\:\limplies\:{\beta}$ [${\beta}$:=${\lfalse}$]
Simplification
Instance of Proposition 1: ${\alpha}\:\limplies\:{\alpha}$.
$\Box$ Proposition 7
Quine Alternatives:
$({\lnot}{\alpha}\:\limplies\:{\beta})\:\limplies\:({\lnot}{\alpha}\:\limplies\:{\lnot}{\beta})\:\limplies\:{\alpha}$ [${\alpha}$:=${\ltrue}$]
Simplification
Reduced to ${\ltrue}$.
$({\lnot}{\alpha}\:\limplies\:{\beta})\:\limplies\:({\lnot}{\alpha}\:\limplies\:{\lnot}{\beta})\:\limplies\:{\alpha}$ [${\alpha}$:=${\lfalse}$]
Simplification
Instance of Proposition 1: ${\alpha}\:\limplies\:{\alpha}$.
$\Box$ Proposition 8
Quine Alternatives:
${\alpha}\,\lor\,{\beta}\:\limplies\:({\alpha}\:\limplies\:{\gamma})\:\limplies\:({\beta}\:\limplies\:{\gamma})\:\limplies\:{\gamma}$ [${\gamma}$:=${\ltrue}$]
Simplification
Reduced to ${\ltrue}$.
${\alpha}\,\lor\,{\beta}\:\limplies\:({\alpha}\:\limplies\:{\gamma})\:\limplies\:({\beta}\:\limplies\:{\gamma})\:\limplies\:{\gamma}$ [${\gamma}$:=${\lfalse}$]
Simplification
Instance of Proposition 6: ${\alpha}\,\lor\,{\beta}\:\limplies\:{\lnot}{\alpha}\:\limplies\:{\beta}$.
$\Box$ Proposition 9
Quine Alternatives:
${\alpha}\,\lor\,{\beta}\,\lor\,{\gamma}\:\limplies\:({\alpha}\:\limplies\:{\delta})\:\limplies\:({\beta}\:\limplies\:{\delta})\:\limplies\:({\gamma}\:\limplies\:{\delta})\:\limplies\:{\delta}$ [${\delta}$:=${\ltrue}$]
Simplification
Reduced to ${\ltrue}$.
${\alpha}\,\lor\,{\beta}\,\lor\,{\gamma}\:\limplies\:({\alpha}\:\limplies\:{\delta})\:\limplies\:({\beta}\:\limplies\:{\delta})\:\limplies\:({\gamma}\:\limplies\:{\delta})\:\limplies\:{\delta}$ [${\delta}$:=${\lfalse}$]
Simplification
Quine Alternatives:
${\alpha}\,\lor\,{\beta}\,\lor\,{\gamma}\:\limplies\:({\alpha}\:\limplies\:{\delta})\:\limplies\:({\beta}\:\limplies\:{\delta})\:\limplies\:({\gamma}\:\limplies\:{\delta})\:\limplies\:{\delta}$ [${\alpha}$:=${\ltrue}$]
Simplification
Reduced to ${\ltrue}$.
${\alpha}\,\lor\,{\beta}\,\lor\,{\gamma}\:\limplies\:({\alpha}\:\limplies\:{\delta})\:\limplies\:({\beta}\:\limplies\:{\delta})\:\limplies\:({\gamma}\:\limplies\:{\delta})\:\limplies\:{\delta}$ [${\alpha}$:=${\lfalse}$]
Simplification
Instance of Proposition 6: ${\alpha}\,\lor\,{\beta}\:\limplies\:{\lnot}{\alpha}\:\limplies\:{\beta}$.
$\Box$ Proposition 10