Quine Alternatives:
${\alpha}{\;\limplies\;}{\alpha}$ $[{\alpha}:={\ltrue}]$
Simplification
Reduced to ${\ltrue}$.
${\alpha}{\;\limplies\;}{\alpha}$ $[{\alpha}:={\lfalse}]$
Simplification
Reduced to ${\ltrue}$.
$\Box$ Proposition 1
Quine Alternatives:
${\alpha}{\;\limplies\;}{\beta}{\;\limplies\;}{\alpha}$ $[{\alpha}:={\ltrue}]$
Simplification
Reduced to ${\ltrue}$.
${\alpha}{\;\limplies\;}{\beta}{\;\limplies\;}{\alpha}$ $[{\alpha}:={\lfalse}]$
Simplification
Reduced to ${\ltrue}$.
$\Box$ Proposition 2
Quine Alternatives:
${\alpha}{\;\limplies\;}({\alpha}{\;\limplies\;}{\beta}){\;\limplies\;}{\beta}$ $[{\alpha}:={\ltrue}]$
Substitution instance of Proposition 1$[{\alpha}{\;\limplies\;}{\alpha}]$ at
${\alpha}{\;\limplies\;}({\alpha}{\;\limplies\;}{\beta}){\;\limplies\;}{\beta}$ $[{\alpha}:={\lfalse}]$
Simplification
Reduced to ${\ltrue}$.
$\Box$ Proposition 3