
Home
Policies
Lectures
Notes

Piazza

CMSC-16100
Honors Introduction to Programming, I
Autumn Quarter, 2020

Lecture 3: Abstract Data Types

*Exercise 3.1 Consider the function defined as follows:

Give Haskell definitions of collatz using guards, and collatz' using
if ... then ... else [We can use apostrophes in variable names!] Note that you
should use div rather than (/) to divide integral values.

Exercise 3.2 The Prelude provides some simple functions for dealing with pairs, fst and snd for
extracting components, and curry and uncurry for swizzling between functions that expect two
arguments, either separately, or packaged together via a pair.

Exercise 3.3 We could have approached this example by creating a deriving instance
Integral n => Integral (Maybe n), as div is part of the Integral type class. But
this would involve implementing several other type classes. Explore the documentation, to determine
what type classes are involved, and what functions they contain.

continues...

collatz

collatz(n) =
⎧⎪⎨⎪⎩1, ifn = 1

1 + collatz(n/2), ifnis even
1 + collatz(3n + 1), otherwise

http://cmsc-16100.cs.uchicago.edu/2020-autumn/
http://cmsc-16100.cs.uchicago.edu/2020-autumn/policies.php
http://cmsc-16100.cs.uchicago.edu/2020-autumn/lectures.php
http://cmsc-16100.cs.uchicago.edu/2020-autumn/notes.php
https://piazza.com/uchicago/fall2020/cmsc16100/home

Exercise 3.4 Implement the three functions lookupWithError, lookupWithDefault, and
lookupInDictionary by direct recursions, i.e., without calling lookup.

Exercise 3.5 A common data structure is a rose tree. This is a kind of tree in which each node holds a
value of a particular type. The actual declarations are a bit different (they rely on Haskell's record
syntax, which we'll see in due course), but they amount to:

Note that recursion can be mutual, and need not be direct.

A tree consists of a node, which has two constituents: the value of type a, and a list of children.

Rose trees are often used to represent semi-structured data, e.g., an outline, or an XML infoset.

Write a function preorder :: Tree a -> [a] which returns the values contained in a Tree
as a list, based on a preorder traversal (i.e., the value at a node comes before the values at its
children). It may be helpful to know about the function concat :: [[a]] -> [a], which
flattens a list of lists into a simple list. (Note that the actual type of concat is just a bit more general
than this.)

© 2009–2020 Ravi Chugh, Stuart A. Kurtz
Last modified: September 07, 2020

⎪⎪
 -- | A rose tree.

 data Tree a = Node a (Forest a)
 type Forest a = [Tree a]

