
Home
Policies
Lectures
Notes

Piazza

CMSC-16100
Honors Introduction to Programming, I
Autumn Quarter, 2020

Lecture 10: Applicative

Exercise 10.1

In the spirit of the liftA* functions, implement the following to lift an unboxed
function and apply it to a boxed list of arguments.

How useful is this function?

Exercise 10.2 Unsurprisingly, there is also an instance of Applicative for Either a. Provide
an instance definition, and compare it to the definition in the Haskell sources.

*Exercise 10.3 Perhaps surprisingly, given the foregoing, there is not an Applicative instance
for (,) a. Why not?

Exercise 10.4

Write an expression in applicative style that computes the same result as:

 liftAN :: Applicative f => ([a] -> b) -> f [a] -> f b

 [(x,y,z) | x <- [1..3], y <- [1..3], z <- [1..3]]

http://cmsc-16100.cs.uchicago.edu/2020-autumn/
http://cmsc-16100.cs.uchicago.edu/2020-autumn/policies.php
http://cmsc-16100.cs.uchicago.edu/2020-autumn/lectures.php
http://cmsc-16100.cs.uchicago.edu/2020-autumn/notes.php
https://piazza.com/uchicago/fall2020/cmsc16100/home

*Exercise 10.5

Consider the following two, very similar looking calculations:

The results of these computations (modulo syntactic noise around ZipList) are identical, but the
computational patterns that produce these results are quite different. Explain the difference.

Exercise 10.6

There are several additional operators defined to improve readability when writing programs in
applicative style:

We won't often use them in our examples. But, similar to our discussion of foldMap and foldr
last time, it can be helpful to think about how to implement such polymorphic functions based only
on their types and what we know about the type classes that are mentioned in their constraints.

Try implementing these functions before peeking at them in the libraries.

© 2009–2020 Ravi Chugh, Stuart A. Kurtz
Last modified: September 24, 2020

 > [(+),(*)] <*> pure 2 <*> pure 3
 [5,6]
 > ZipList [(+),(*)] <*> pure 2 <*> pure 3
 ZipList {getZipList = [5,6]}

 (<$) :: Functor f => a -> f b -> f a
 (*>) :: Applicative f => f a -> f b -> f b
 (<*) :: Applicative f => f a -> f b -> f a
 (<**>) :: Applicative f => f a -> f (a -> b) -> f b

