CMSC-16100 Honors Introduction to Programming, I Autumn Quarter, 2020

Lecture 11. Monade

ecture 11: Monads	Home
	Policies
	Lectures
Exercise 11.1 Show that $(>>= id)$:: Monad $m => m$ $(m a) -> m a$, and	Labs
therefore that join = (>>= id) is a plausible definition for join in a Monad. It is,	Notes
in fact, the definition.	Piazza

*Exercise 11.2 Consider the trivial two-element list [(), ()]. Because this is an element of the list monad, we can include it on any line of list-defining **do** expression. Consider the two statements:

```
do
    [(), ()]
    x <- [1,2,3]
    pure x
do
    x <- [1,2,3]
    [(), ()]
    pure x
```

VS

These produce very different values. Explain the difference. The first expression can be re-written, using the techniques described above, into a particularly simple form that does not involve do. Do so.

Optionally: if you're feeling especially brave, the second form can be re-written in the same way, albeit not quite so simply. Do so.

^{© 2009-2020} Ravi Chugh, Stuart A. Kurtz Last modified: October 01, 2020