
Functional Parsers

Jeroen Fokker

Dept. of Computer Science, Utrecht University

P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

e-mail jeroen@cs.ruu.nl

Abstract. In an informal way the `list of successes' method for writ-

ing parsers using a lazy functional language (Gofer) is described. The

library of higher-order functions (known as `parser combinators') that

is developed is used for writing parsers for nested parentheses and op-

erator expressions with an arbitrary number of priorities. The method

is applied on itself to write a parser for grammars, that yields a parser

for the language of the grammar. In the text exercises are provided, the

solutions of which are given at the end of the article.

1 Introduction

This article is an informal introduction to writing parsers in a lazy functional

language using `parser combinators'. Most of the techniques have been described

by Burge [2], Wadler [5] and Hutton [3]. Recently, the use of so-called monads

has become quite popular in connection with parser combinators [6, 7]. We will

not use them in this article, however, to show that no magic is involved in using

parser combinators. You are nevertheless encouraged to study monads at some

time, because they form a useful generalization of the techniques described here.

In this article we stick to standard functional language constructs like higher-

order functions, lists, and algebraic types. All programs are written in Gofer [4].

List comprehensions are used in a few places, but they are not essential, and

could be easily rephrased using the map, filter and concat functions [1]. Type

classes are only used for overloading the equality and arithmetic operators.

We will start by motivating the de�nition of the type of parser functions.

Using that type, we will be capable to build parsers for the language of ambiguous

grammars. Next, we will introduce some elementary parsers that can be used for

parsing the terminal symbols of a language.

In section 4 the �rst parser combinators are introduced, which can be used

for sequentially and alternatively combining parsers. In section 5 some functions

are de�ned, which make it possible to calculate a value during parsing. You may

use these functions for what traditionally is called `de�ning semantic functions':

some useful meaning can be associated to syntactic structures. As an example,

in section 6 we construct a parser for strings of matching parentheses, where

di�erent semantic values are calculated: a tree describing the structure, and an

integer indicating the nesting depth.

In sections 7 and 8 we introduce some new parser combinators. Not only

these will make life easier later, but also their de�nitions are nice examples

of using parser combinators. A real application is given in section 9, where a

parser for arithmetical expressions is developed. Next, the expression parser is

generalized to expressions with an arbitrary number of precedence levels. This

is done without coding the priorities of operators as integers, and we will avoid

using indices and ellipses.

In the last section parser combinators are used to parse the string represen-

tation of a grammar. As a semantic value, a parser is derived for the language

of the grammar, which in turn can be applied to an input string. Thus we will

essentially have a parser generator.

2 The type `Parser'

The parsing problem is: given a string, construct a tree that describes the struc-

ture of the string. In a functional language we can de�ne a datatype Tree. A

parser could be implemented by function of the following type:

type Parser = String -> Tree

For parsing substructures, a parser could call other parsers, or itself recursively.

These calls need not only communicate their result, but also which part of the

input string is left unprocessed. As this cannot be done using a global variable,

the unprocessed input string has to be part of the result of the parser. The two

results can be grouped in a tuple. A better de�nition for the type Parser is thus:

type Parser = String -> (String, Tree)

The type String is de�ned in the standard prelude as a list of characters. The

type Tree, however, is not yet de�ned. The type of tree that is returned de-

pends on the application. Therefore it is better to make the parser type into a

polymorphic type, by parameterizing it with the type of the parse tree. Thus we

abstract from the type of the parse tree at hand, substituting the type variable

a for it:

type Parser a = String -> (String , a)

For example, a parser that returns a structure of type Oak now has type Parser

Oak. For parse trees that represent an `expression' we could de�ne a type Expr,

making it possible to develop parsers returning an expression: Parser Expr.

Another instance of a parser is a parse function that recognizes a string of

digits, and yields the number represented by it as a parse `tree'. In this case the

function is of type Parser Int.

Until now, we have been assuming that every string can be parsed in exactly

one way. In general, this need not be the case: it may be that a single string

can be parsed in various ways, or that there is no possible way of parsing a

string. As another re�nement of the type de�nition, instead of returning one

parse tree (and its associated rest string), we let a parser return a list of trees.

Each element of the result consists of a tree, paired with the rest string that was

left unprocessed whil parsing it. The type de�nition of Parser therefore had

better be:

type Parser a = String -> [(String,a)]

If there is just one parsing, the result of the parse function will be a singleton

list. If no parsing is possible, the result will be an empty list. In the case of an

ambiguous grammar, alternative parsings make up the elements of the result.

This method is called the list of successes method, described by Wadler [5].

It can be used in situations where in other languages you would use backtracking

techniques. In the Bird and Wadler textbook it is used to solve combinatorial

problems like the eight queens problem [1]. If only one solution is required rather

than all possible solutions, you can take the head of the list of successes. Thanks

to lazy evaluation, not all elements of the list are determined if only the �rst

value is needed, so there will be no loss of e�ciency. Lazy evaluation provides a

backtracking approach to �nding the �rst solution.

Parsers with the type described so far operate on strings, that is lists of char-

acters. There is however no reason for not allowing parsing strings of elements

other than characters. You may imagine a situation in which a preprocessor pre-

pares a list of tokens, which is subsequently parsed. To cater for this situation,

as a �nal re�nement of the parser type we again abstract from a type: that of

the elements of the input string. Calling it a, and the result type b, the type of

parsers is de�ned by:

type Parser a b = [a] -> [([a],b)]

or if you prefer meaningful identi�ers over conciseness:

type Parser symbol result = [symbol] -> [([symbol],result)]

We will use this type de�nition in the rest of this article.

3 Elementary parsers

We will start quite simply, de�ning a parse function that just recognizes the

symbol `a'. The type of the input string symbols is Char in this case, and as a

parse `tree' we also simply use a Char:

symbola :: Parser Char Char

symbola [] = []

symbola (x:xs) | x=='a' = [(xs, 'a')]

| otherwise = []

The list of successes method immediately pays o�, because now we can return

an empty list if no parsing is possible (because the input is empty, or does not

start with an `a').

In the same fashion, we can write parsers that recognize other symbols. As

always, rather than de�ning a lot of closely related functions, it is better to

abstract from the symbol to be recognized by making it an extra parameter of

the function. Also, the function can operate on strings other than characters,

so that it can be used in other applications than character oriented ones. The

only prerequisite is that the symbols to be parsed can be tested for equality. In

Gofer, this is indicated by the Eq predicate in the type of the function:

symbol :: Eq s => s -> Parser s s

symbol a [] = []

symbol a (x:xs) | a==x = [(xs,x)]

| otherwise = []

As usual, there are a number of ways to de�ne the same function. If you like list

comprehensions, you might prefer the following de�nition:

symbol a [] = []

symbol a (x:xs) = [(xs,a) | a==x]

In Gofer, a list comprehension with no generators but only a condition is de�ned

to be empty or singleton, depending on the condition.

The function symbol is a function that, given a symbol, yields a parser for

that symbol. A parser in turn is a function, too. This is why two parameters

appear in the de�nition of symbol.

We will now de�ne some elementary parsers that can do the work tradition-

ally taken care of by lexical analyzers. For example, a useful parser is one that

recognizes a �xed string of symbols, such as `begin' or `end'. We will call this

function token.

token k xs | k==take n xs = [(drop n xs, k)]

| otherwise = []

where n = length k

As in the case of the symbol function we have parameterized this function with

the string to be recognized, e�ectively making it into a family of functions. Of

course, this function is not con�ned to strings of characters. However, we do

need an equality test on the input string type; the type of token is:

token :: Eq [s] => [s] -> Parser s [s]

The function token is a generalization of the symbol function, in that it recog-

nizes more than one character.

Another generalization of symbol is a function which may, depending on the

input, return di�erent parse results. The function satisfy is an example of this.

Where the symbol function tests for equality to a given symbol, in satisfy an

arbitrary predicate can be speci�ed. Again, satisfy e�ectively is a family of

parser functions. It is de�ned here using the list comprehension notation:

satisfy :: (s->Bool) -> Parser s s

satisfy p [] = []

satisfy p (x:xs) = [(xs,x) | p x]

Exercise 1. Since satisfy is a generalization of symbol, the function symbol

could have been de�ned as an instance of satisfy. How can this be done?

In books on grammar theory an empty string is often called `epsilon'. In this

tradition, we will de�ne a function epsilon that `parses' the empty string. It

does not consume any input, and thus always returns an empty parse tree and

unmodi�ed input. A zero-tuple can be used as a result value: () is the only value

of the type ().

epsilon :: Parser s ()

epsilon xs = [(xs, ())]

A variation is the function succeed, that neither consumes input, but does

always return a given, �xed value (or `parse tree', if you could call the result of

processing zero symbols a parse tree. . .)

succeed :: r -> Parser s r

succeed v xs = [(xs,v)]

Of course, epsilon can be de�ned using succeed:

epsilon :: Parser s ()

epsilon = succeed ()

Dual to the function succeed is the function fail, that fails to recognize any

symbol on the input string. It always returns an empty list of successes:

fail :: Parser s r

fail xs = []

We will need this trivial parser as a neutral element for foldr later. Note the

di�erence with epsilon, which does have one element in its list of successes

(albeit an empty one).

4 Parser combinators

Using the elementary parsers from the previous section, parsers can be con-

structed for terminal symbols from a grammar. More interesting are parsers for

nonterminal symbols. Of course, you could write these by hand, but it is more

convenient to construct them by partially parameterizing higher-order functions.

Important operations on parsers are sequential and alternative composition.

We will develop two functions for this, which for notational convenience are de-

�ned as operators: <*> for sequential composition, and <|> for alternative com-

position. Priorities of these operators are de�ned so as to minimize parentheses

in practical situations:

infixr 6 <*>

infixr 4 <|>

Both operators have two parsers as parameter, and yield a parser as result. By

again combining the result with other parsers, you may construct even more

involved parsers.

In the de�nitions below, the functions operate on parsers p1 and p2. Apart

from the parameters p1 and p2, the function operates on a string, which can

be thought of as the string that is parsed by the parser that is the result of

combining p1 and p2.

To start, we will write the operator <*>. For sequential composition, �rst p1

must be applied to the input. After that, p2 is applied to the rest string part of

the result. Because p1 yields a list of solutions, we use a list comprehension in

which p2 is applied to all rest strings in the list:

(<*>) :: Parser s a -> Parser s b -> Parser s (a,b)

(p1 <*> p2) xs = [(xs2, (v1,v2))

| (xs1, v1) <- p1 xs

, (xs2, v2) <- p2 xs1

]

The result of the function is a list of all possible tuples (v1,v2) with rest string

xs2, where v1 is the parse tree computed by p1, and where rest string xs1 is

used to let p2 compute v2 and xs2.

Apart from `sequential composition' we need a parser combinator for repre-

senting `choice'. For this, we have the parser combinator operator <|>:

(<|>) :: Parser s a -> Parser s a -> Parser s a

(p1 <|> p2) xs = p1 xs ++ p2 xs

Thanks to the list of successes method, both p1 and p2 yield lists of possible

parsings. To obtain all possible successes of choice between p1 and p2, we only

need to concatenate these two lists.

Exercise 2. When de�ning the priority of the <|> operator, using the infixr

keyword we also speci�ed that the operator associates to the right. Why is this

a better choice than association to the left?

The result of parser combinators is again a parser, which can be combined

with other parsers. The resulting parse trees are intricate tuples which re
ect

the way in which the parsers were combined. Thus, the term `parse tree' is really

appropriate. For example, the parser p where

p = symbol 'a' <*> symbol 'b' <*> symbol 'c'

is of type Parser Char (Char,(Char,Char)).

Although the tuples clearly describe the structure of the parse tree, it is

a problem that we cannot combine parsers in an arbitrary way. For example,

it is impossible to alternatively compose the parser p above with symbol 'a',

because the latter is of type Parser Char Char, and only parsers of the same

type can be composed alternatively. Even worse, it is not possible to recursively

combine a parser with itself, as this would result in in�nitely nested tuple types.

What we need is a way to alter the structure of the parse tree that a given parser

returns.

5 Parser transformers

Apart from the operators <*> and <|>, that combine parsers, we can de�ne

some functions that modify or transform existing parsers. We will develop three

of them: sp lets a given parser neglect initial spaces, just transforms a parser

into one that insists on empty rest string, and <@ applies a given function to the

resulting parse trees.

The �rst parser transformer is sp. It drops spaces from the input, and then

applies a given parser:

sp :: Parser Char a -> Parser Char a

sp p = p . dropWhile (==' ')

or if you prefer functional de�nitions:

sp = (. dropWhile (==' '))

The second parser transformer is just. Given a parser p it yields a parser that

does the same as p, but also guarantees that the rest string is empty. It does so

by �ltering the list of successes for null rest strings. Because the rest string is

the �rst component of the list, the function can be de�ned as:

just :: Parser s a -> Parser s a

just p = filter (null.fst) . p

Exercise 3. De�ne the function just using a list comprehension instead of the

filter function.

The most important parser transformer is the one that transforms a parser

into a parser which modi�es its result value. We will de�ne it as an operator

<@, that applies a given function to the result parse trees of a given parser. We

have chosen the symbol so that you might pronounce it as `apply'; the arrow

points away from the function. Given a parser p and a function f, the operator

<@ returns a parser that does the same as p, but in addition applies f to the

resulting parse tree. It is most easily de�ned using a list comprehension:

infixr 5 <@

(<@) :: Parser s a -> (a->b) -> Parser s b

(p <@ f) xs = [(ys, f v)

| (ys, v) <- p xs

]

Using this operator, we can transform the parser that recognizes a digit character

into one that delivers the result as an integer:

digit :: Parser Char Int

digit = satisfy isDigit <@ f

where f c = ord c - ord '0'

In practice, the <@ operator is used to build a certain value during parsing (in

the case of parsing a computer program this value may be the generated code,

or a list of all variables with their types, etc.). Put more generally: using <@ we

can add semantic functions to parsers.

While testing your self-made parsers, you can use just for discarding the

parses which leave a non-empty rest string. But you might become bored of

seeing the empty list as rest string in the results. Also, more often than not you

may be interested in just some parsing rather than all possibilities.

As we have reserved the word `parser' for a function that returns all pars-

ings, accompanied with their rest string. Let's therefore de�ne a new type for a

function that parses a text, guarantees empty rest string, picks the �rst solution,

and delivers the parse tree only (discarding the rest string, because it is known

to be empty at this stage). The functional program for converting a parser in

such a `deterministic parser' is more concise and readable than the description

above:

type DetPars symbol result = [symbol] -> result

some :: Parser s a -> DetPars s a

some p = snd . head . just p

Use the some function with care: this function assumes that there is at least

one solution, so it fails when the resulting DetPars is applied to a text which

contains a syntax error.

6 Matching parentheses

Using the parser combinators and transformers developed thus far, we can con-

struct a parser that recognizes matching pairs of parentheses. A �rst attempt,

that is not type correct however, is:

parens :: Parser Char ???

parens = (symbol '('

<*> parens

<*> symbol ')'

<*> parens

)

<|> epsilon

This de�nition is inspired strongly by the well known grammar for nested paren-

theses. The type of the parse tree, however, is a problem. If this type would be

a, then the type of the composition of the four subtrees in the �rst alternative

would be (Char,(a,(Char,a))), which is not the same or uni�able. Also, the

second alternative (epsilon) must yield a parse tree of the same type. Therefore

we need to de�ne a type for the parse tree �rst, and use the operator <@ in both

alternatives to construct a tree of the correct type. The type of the parse tree

can be for example:

data Tree = Nil

| Bin (Tree,Tree)

Now we can add `semantic functions' to the parser:

parens :: Parser Char Tree

parens = (symbol '('

<*> parens

<*> symbol ')'

<*> parens

) <@ (\(_,(x,(_,y))) -> Bin(x,y))

<|> epsilon <@ const Nil

The rather obscure text \(_,(x,(_,y))) is a lambda pattern describing a func-

tion with as �rst parameter a tuple containing the four parts of the �rst alter-

native, of which only the second and fourth matter.

Exercise 4. Why don't we use a four-tuple in the lambda pattern instead of a

tuple with as second element a tuple with as second element a tuple?

Exercise 5. Why is the function const, which is de�ned by const x y = x in the

prelude, needed? Can you write the second alternative more concisely without

using const and <@?

In the lambda pattern, underscores are used as placeholders for the parse

trees of symbol '(' and symbol ')', which are not needed in the result. In

order to not having to use these complicated tuples, it might be easier to discard

the parse trees for symbols in an earlier stage. For this, we introduce two auxiliary

parser combinators, which will prove useful in more situations. These operators

behave the same as <*>, except that they discard the result of one of their two

parser arguments:

(<*) :: Parser s a -> Parser s b -> Parser s a

p <* q = p <*> q <@ fst

(*>) :: Parser s a -> Parser s b -> Parser s b

p *> q = p <*> q <@ snd

We can use these new parser combinators for improving the readability of the

parser parens:

open = symbol '('

close = symbol ')'

parens :: Parser Char Tree

parens = (open *> parens <* close) <*> parens <@ Bin

<|> succeed Nil

By judiciously choosing the priorities of the operators involved:

infixr 6 <*> , <* , *>

infixl 5 <@

infixr 4 <|>

we minimize on the number of parentheses needed.

Exercise 6. The parentheses around open*>parens<*close in the �rst alterna-

tive, are required in spite of our clever priorities. What would happen if we left

them out?

By varying the function used after <@ (the `semantic function'), we can yield

other things than parse trees. As an example we write a parser that calculates

the nesting depth of nested parentheses:

nesting :: Parser Char Int

nesting = (open *> nesting <* close) <*> nesting <@ f

<|> succeed 0

where f (x,y) = (1+x) `max` y

If more variations are of interest, it may be worthwhile to make the semantic

function and the value to yield in the `empty' case into two additional param-

eters. The higher order function foldparens parses nested parentheses, using

the given function and constant respectively, after parsing one of the two alter-

natives:

foldparens :: ((a,a)->a) -> a -> Parser Char a

foldparens f e = p

where p = (open *> p <* close) <*> p <@ f

<|> succeed e

Exercise 7. The function foldparens is a generalization of parens and nesting.

Write the latter two as an instantiation of the former.

A session in which nesting is used may look like this:

? just nesting "()(())()"

[(2,[])]

? just nesting "())"

[]

Indeed nesting only recognizes correctly formed nested parentheses, and calcu-

lates the nesting depth on the
y.

Exercise 8. What would happen if we omit the just transformer in these exam-

ples?

7 More parser combinators

Although in principle you can build parsers for any context-free language using

the combinators <*> and <|>, in practice it is easier to have some more parser

combinators available. In traditional grammar formalisms, too, additional sym-

bols are used to describe for example optional or repeated constructions. Con-

sider for example the BNF formalism, in which originally only sequential and

alternative composition could be used (denoted by juxtaposition and vertical

bars, respectively), but which was later extended to also allow for repetition,

denoted by asterisks.

It is very easy to make new parser combinators for extensions like that. As

a �rst example we consider repetition. Given a parser for a construction, many

makes a parser for zero or more occurrences of that construction:

many :: Parser s a -> Parser s [a]

many p = p <*> many p <@ list

<|> succeed []

The auxiliary function list is de�ned as the uncurried version of the list con-

structor:

list (x,xs) = x:xs

The recursive de�nition of the parser follows the recursive structure of lists.

Perhaps even nicer is the version in which the epsilon parser is used instead of

succeed:

many :: Parser s a -> Parser s [a]

many p = p <*> many p <@ (\(x,xs)->x:xs)

<|> epsilon <@ (_ ->[])

Exercise 9. But to obtain symmetry, we could also try and avoid the <@ operator

in both alternatives. Earlier we de�ned the operator <* as an abbreviation of

applying <@ fst to the result of <*>. In the function many, also the result of

<*> is postprocessed. De�ne an utility function <:*> for this case, and use it to

simplify the de�nition of many even more.

The order in which the alternatives are given only in
uences the order in which

solutions are placed in the list of successes.

Exercise 10. Consider application of the parser many (symbol 'a') to the string

"aaa". In what order do the four possible parsings appear in the list of successes?

An example in which the many combinator can be used is parsing of a natural

number:

natural :: Parser Char Int

natural = many digit <@ foldl f 0

where f a b = a*10 + b

De�ned in this way, the natural parser also accepts empty input as a number. If

this is not desired, we'd better use the many1 parser combinator, which accepts

one or more occurrences of a construction.

Exercise 11. De�ne the many1 parser combinator.

Another combinator that you may know from other formalisms is the option

combinator. The constructed parser generates a list with zero or one element,

depending on whether the construction was recognized or not.

option :: Parser s a -> Parser s [a]

option p = p <@ (\x->[x])

<|> epsilon <@ (\x->[])

For aesthetic reasons we used epsilon in this de�nition; another way to write

the second alternative is succeed [].

The combinators many, many1 and option are classical in compiler construc-

tions, but there is no need to leave it at that. For example, in many languages

constructions are frequently enclosed between two meaningless symbols, most

often some sort of parentheses. For this we design a parser combinator pack.

Given a parser for an opening token, a body, and a closing token, it constructs

a parser for the enclosed body:

pack :: Parser s a -> Parser s b -> Parser s c -> Parser s b

pack s1 p s2 = s1 *> p <* s2

Special cases of this combinator are:

parenthesized p = pack (symbol '(') p (symbol ')')

bracketed p = pack (symbol '[') p (symbol ']')

compound p = pack (token "begin") p (token "end")

Another frequently occurring construction is repetition of a certain construction,

where the elements are separated by some symbol. You may think of lists of

parameters (expressions separated by commas), or compound statements (state-

ments separated by semicolons). For the parse trees, the separators are of no im-

portance. The function listOf below generates a parser for a (possibly empty)

list, given a parser for the items and a parser for the separators:

listOf :: Parser s a -> Parser s b -> Parser s [a]

listOf p s = p <:*> many (s *> p) <|> succeed []

Useful instatiations are:

commaList, semicList :: Parser Char a -> Parser Char [a]

commaList p = listOf p (symbol ',')

semicList p = listOf p (symbol ';')

Exercise 12. As another variation on the theme `repetition', de�ne a parser

sequence combinator that transforms a list of parsers for some type into a

parser yielding a list of elements of that type. Also de�ne a combinator choice

that iterates the operator <|>.

Exercise 13. As an application of sequence, de�ne the function token that was

discussed in section 3.

A somewhat more complicated variant of the function listOf is the case

where the separators carry a meaning themselves. For example, an arithmetical

expressions, where the operators that separate the subexpressions have to be part

of the parse tree. For this case we will develop the functions chainr and chainl.

These functions expect that the parser for the separators yields a function (!);

that function is used by chain to combine parse trees for the items. In the case

of chainr the operator is applied right-to-left, in the case of chainl it is applied

left-to-right. The basic structure of chainl is the same as that of listOf. But

where the function listOf discards the separators using the operator *>, we will

keep it in the result now using <*>. Furthermore, postprocessing is more di�cult

now than just applying list.

chainl :: Parser s a -> Parser s (a->a->a) -> Parser s a

chainl p s = p <*> many (s <*> p) <@ f

The function f should operate on an element and a list of tuples, each contain-

ing an operator and an element. For example, f(e

0

; [(�

1

; e

1

); (�

2

; e

2

); (�

3

; e

3

)])

should return ((e

o

�

1

e

1

)�

2

e

2

)�

3

e

3

. You may recognize a version of foldl in

this (albeit an uncurried one), where a tuple (�; y) from the list and intermediate

result x are combined applying x� y. If we de�ne

ap2 (op,y) x = x `op` y

or even

ap2 (op,y) = (`op` y)

then we may de�ne

chainl :: Parser s a -> Parser s (a->a->a) -> Parser s a

chainl p s = p <*> many (s <*> p)

<@ uncurry (foldl (flip ap2))

Dual to this function is chainr, which applies the operators associating to the

right.

Exercise 14. Try to de�ne chainr. The de�nition is beautifully symmetric to

chainl, but you only experience the beauty when you discover it yourself. . .

8 Analyzing options

The option function constructs a parser which yields a list of elements: an

empty list if the optional construct was not recognized, and a singleton list if it

was present. Postprocessing functions may therefore safely assume that the list

consists of zero or one element, and will in practice do a case analysis. You will

therefore often need constructions like:

option p <@ f

where f [] = a

f [x] = b x

As this necessitates a new function name for every optional symbol in our gram-

mar, we had better provide a higher order function for this situation. We will

de�ne a special version <?@ of the <@ operator, which provides a semantics for

both the case that the optional construct was present and that it was not. The

right argument of <?@ consists of two parts: a constant to be used in absence, and

a function to be used in presence of the optional construct. The new transformer

is de�ned by:

p <?@ (no,yes) = p <@ f

where f [] = no

f [x] = yes x

For a practical use of this, let's extend the parser for natural numbers to
oating

point numbers:

natural :: Parser Char Int

natural = many digit <@ foldl f 0

where f n d = n*10 + d

The fractional part of a
oating point number is parsed by:

fract :: Parser Char Float

fract = many digit <@ foldr f 0.0

where f d x = (x + fromInteger d)/10.0

But the fractional part is optional in a
oating point number.

fixed :: Parser Char Float

fixed = (integer <@ fromInteger)

<*>

(option (symbol '.' *> fract) <?@ (0.0,id))

<@ uncurry (+)

The decimal point is for separation only, and therefore immediately discarded by

the operator *>. The decimal point and the fractional part together are optional.

In their absence, the number 0.0 should be used, in there presence, the identity

function should be applied to the fractional part. Finally, integer and fractional

part are added.

Exercise 15. De�ne a parser for a (possibly negative) integer number, which

consists of an optional minus sign followed by a natural number.

Exercise 16. Let the parser for
oating point numbers recognize an optional ex-

ponent.

In the solution of exercise 15 you will �nd a nice construct, in which the �rst

construct parsed yields a function which is subsequently applied to the second

construct parsed. We can use that for yet another re�nement of the chainr func-

tion. It was de�ned in the previous section using the many function. The parser

yields a list of tuples (operator,element), which immediately afterwards is de-

stroyed by foldr. Why bothering building the list, then, anyway? We can apply

the function that is folded with directly during parsing, without �rst building a

list. For this, we need to substitute the body of many in the de�nition of chainr.

We can further abbreviate the phrase p <|> epsilon by option p. By directly

applying the function that was previously used during foldr we obtain:

chainr' p s = q

where q = p <*> (option (s <*> q) <?@ (id,ap2))

<@ flip ap

Exercise 17. You want to try chainl yourself?

By the use of the option and many functions, a large amount of backtracking

possibilities are introduced. This is not always advantageous. For example, if we

de�ne a parser for identi�ers by

identifier = many1 (satisfy isAlpha)

a single word may also be parsed as two identi�ers. Caused by the order of the

alternatives in the de�nition of many, the `greedy' parsing, which accumulates

as many letters as possible in the identi�er is tried �rst, but if parsing fails

elsewhere in the sentence, also less greedy parsings of the identi�er are tried {

in vain.

In situations where from the way the grammar is built we can predict that it is

hopeless to try non-greedy successes of many. We can de�ne a parser transformer

first, that transforms a parser into a parser that only yields the �rst possibility.

It does so by taking the �rst element of the list of successes.

first :: Parser a b -> Parser a b

first p xs | null r = []

| otherwise = [head r]

where r = p xs

Using this function, we can create a special `take all or nothing' version of many:

greedy = first . many

greedy1 = first . many1

If we compose the first function with the option parser combinator:

compulsion = first . option

we get a parser which must accept a construction if it is present, but which does

not fail if it is not present.

9 Arithmetical expressions

In this section we will use the parser combinators in a concrete application. We

will develop a parser for arithmetical expressions, of which parse trees are of

type Expr:

data Expr = Con Int

| Var String

| Fun String [Expr]

| Expr :+: Expr

| Expr :-: Expr

| Expr :*: Expr

| Expr :/: Expr

In order to account for the priorities of the operators, we will use a grammar

with non-terminals `expression', `term' and `factor': an expression is composed

of terms separated by + or �; a term is composed of factors separated by �

or =, and a factor is a constant, variable, function call, or expression between

parentheses.

This grammar is represented in the functions below:

fact :: Parser Char Expr

fact = integer <@ Con

<|> identifier

<*> (option (parenthesized (commaList expr))

<?@ (Var,flip Fun))

<@ ap'

<|> parenthesized expr

The �rst alternative is a constant, which is fed into the `semantic function' Var.

The second alternative is a variable or function call, depending on the presence of

a parameterlist. In absence of the latter, the function Var is applied, in presence

the function Fun. For the third alternative there is no semantic function, because

the meaning of an expression between parentheses is the same as that of the

expression without parentheses.

For the de�nition of a term as a list of factors separated by multiplicative

operators we will use the function chainr:

term :: Parser Char Expr

term = chainr fact

(symbol '*' <@ const (:*:)

<|> symbol '/' <@ const (:/:)

)

Recall that chainr repeatedly recognizes its �rst parameter (fact), separated

by its second parameter (an � or =). The parse trees for the individual factors

are joined by the constructor functions mentioned after <@.

The function expr is analogous to term, only with additive operators instead

of multiplicative operators, and with terms instead of factors:

expr :: Parser Char Expr

expr = chainr term

(symbol '+' <@ const (:+:)

<|> symbol '-' <@ const (:-:)

)

From this example the strength of the method becomes clear. There is no need

for a separate formalism for grammars; the production rules of the grammar are

joined using higher-order functions. Also, there is no need for a separate parser

generator (like `yacc'); the functions can be viewed both as description of the

grammar and as an executable parser.

10 Generalized expressions

Arithmetical expressions in which operators have more than two levels of priority

can be parsed by writing more auxiliary functions between term and expr. The

function chainr is used in each de�nition, with as �rst parameter the function

of one priority level lower.

If there are nine levels of priority, we obtain nine copies of almost the same

text. This would not be as it should be. Functions that resemble each other are

an indication that we should write a generalized function, where the di�erences

are described using extra parameters. Therefore, let's inspect the di�erences in

the de�nitions of term and expr again. These are:

� The operators and associated tree constructors that are used in the second

parameter of chainr

� The parser that is used as �rst parameter of chainr

The generalized function will take these two di�erences as extra parameters: the

�rst in the form of a list of pairs, the second in the form of a parse function:

type Op a = (Char, a->a->a)

gen :: [Op a] -> Parser Char a -> Parser Char a

gen ops p = chainr p (choice (map f ops))

where f (s,c) = symbol s <@ const c

If furthermore we de�ne as shorthand:

multis = [('*',(:*:)), ('/',(:/:))]

addis = [('+',(:+:)), ('-',(:-:))]

then expr and term can be de�ned as partial parametrizations of gen:

expr = gen addis term

term = gen multis fact

By expanding the de�nition of term in that of expr we obtain:

expr = addis `gen` (multis `gen` fact)

which an experienced functional programmer immediately recognizes as an ap-

plication of foldr:

expr = foldr gen fact [addis, multis]

From this de�nition a generalization to more levels of priority is simply a matter

of extending the list of operator-lists.

The very compact formulation of the parser for expressions with an arbitrary

number of priority levels was possible because the parser combinators could be

used in conjunction with the existing mechanisms for generalization and partial

parametrization in the functional language.

Contrary to conventional approaches, the levels of priority need not be coded

explicitly with integers. The only thing that matters is the relative position of

an operator in the list of `list with operators of the same priority'. Also, the

insertion of new priority levels is very easy.

11 Self application

Although in the preceding sections it is shown that a separate formalism for

grammars is not needed, users might want to stick to, for example, bnf-notation

for writing grammars. Therefore in this section we will write a function that

transforms a bnf-grammar into a parser. The bnf-grammar is given a a string,

and is analyzed itself of course by a parser. This parser is a parser that as parse

`tree' yields a parser! Thus, the title of this section is justi�ed.

This section is structured as follows. First we write some functions that are

needed to manipulate an environment. Next, we describe how a grammar can be

parsed. Then we will de�ne a data structure in which parse trees for an arbitrary

grammar can be represented. Finally we will show how the parser for grammars

can yield a parser for the language described by the grammar.

Environments An environment is a list of pairs, in which a �nite mapping can

be represented. The function assoc can be used to associate a value to its image

under the mapping.

type Env a b = [(a,b)]

assoc :: Eq s => Env s d -> s -> d

assoc ((u,v):ws) x | x==u = v

| otherwise = assoc ws x

We also de�ne a function mapenv that applies a function to all images in an

environment.

mapenv :: (a->b) -> Env s a -> Env s b

mapenv f [] = []

mapenv f ((x,v):ws) = (x,f v) : mapenv f ws

Grammars In a grammar, terminal symbols and nonterminal symbols are used.

Both are represented by a string. We provide a datatype with two cases for the

two kinds of symbols:

data Symbol = Term String

| Nont String

The right hand side of a production rule consists of a number of alternatives,

each of which is a list of symbols:

type Alt = [Symbol]

type Rhs = [Alt]

Finally, a grammar is an association between a (nonterminal) symbol an the

right hand side of the production rule for it:

type Gram = Env Symbol Rhs

Grammars can easily be denoted using the bnf-notation. For this notation we

will write a parser, that as a parse tree yields a value of type Gram. The parser

for bnf-grammars in parameterized with a parser for nonterminals and a parser

for terminals, so that we can adopt di�erent conventions for representing them

later. We use the elementary parsers sptoken and spsymbol rather than token

and symbol to allow for extra spaces in the grammar representation.

bnf :: Parser Char String -> Parser Char String

-> Parser Char Gram

bnf nontp termp = many rule

where rule = (nont

<*> sptoken "::=" *> rhs <* spsymbol '.'

)

rhs = listOf alt (spsymbol '|')

alt = many (term <|> nont)

term = sp termp <@ Term

nont = sp nontp <@ Nont

A bnf-grammar consists of `many' rules, each consisting of a nonterminal sepa-

rated by a ::=-symbol from the rhs and followed by a full stop. The rhs is a list of

alternatives, separated by j-symbols, where each alternative consists of `many'

symbols, terminal or nonterminal. Terminals and nonterminals are recognized

by the parsers provided as parameter to the bnf function.

An example of a grammar representation that can be parsed with this parser

is the grammar for block structured statements:

blockgram = "BLOCK ::= begin BLOCK end BLOCK | ."

Here we used the convention to denote nonterminals by upper case and terminals

by lower case characters. In a call of the bnf functions we should specify these

conventions. For example:

test = some (bnf nont term) blockgram

where nont = greedy1 (satisfy isUpper)

term = greedy1 (satisfy isLower)

The output of this test is the following environment:

[(Nont "BLOCK",[[Term "begin"

, Nont "BLOCK"

, Term "end"

, Nont "BLOCK"

]

, []

]

)

]

Parse trees We can no longer use a data structure that is specially designed for

one particular grammar, like the Expr type in section 9. Instead, we de�ne a

generic data structure, that describes parse trees for sentences from an arbitrary

grammar. We simply call them Tree; they are instances of multibranching trees

or `rose trees':

data Tree = Node Symbol [Tree]

Parsers instead of grammars Using the bfn function, we can easily generate

values of the Gram type. But what we really need in practice is a parser for the

language that is described by a bnf grammar. So let's de�ne a function

parsGram :: Gram -> Symbol -> Parser Symbol Tree

that given a grammar and a start symbol generates a parser for the language

described by the grammar.Having de�ned it, we can let is postprocess the output

of the bnf function.

The function parsGram uses some auxiliary functions, which generate a parser

for a symbol, an alternative, and the rhs of a rule, respectively:

parsGram :: Gram -> Symbol -> Parser Symbol Tree

parsGram gram start = parsSym start

where

parsSym :: Symbol -> Parser Symbol Tree

parsSym s@(Term t) = symbol s <@ const [] <@ Node s

parsSym s@(Nont n) = parsRhs (assoc gram s) <@ Node s

parsAlt :: Alt -> Parser Symbol [Tree]

parsAlt = sequence . map parsSym

parsRhs :: Rhs -> Parser Symbol [Tree]

parsRhs = choice . map parsAlt

The parsSym function distinguishes cases for terminal and nonterminal func-

tions. For terminal symbols a parser is generated that just recognizes that sym-

bol, and subsequently a Node for the parse tree is build.

Exercise 18. What is the <@ const [] transformation used for?

For nonterminal symbols, the corresponding rule is looked up in the grammar,

which is an environment after all. Then the function parsRhs is used to con-

struct a parser for a rhs. The function parsRhs generates parsers for each alter-

native, and makes a choice from them. Finally, the function parseAlt generates

parsers for the individual symbols in the alternative, and combines them using

the sequence function.

A parser generator In theoretical textbooks a context-free grammar is usually

described as a four-tuple (N; T;R; S) consisting of a set of nonterminals, a set

of terminals, a set of rules and a start symbol. Let's do so, representing a set of

symbols by a parser:

type SymbolSet = Parser Char String

type CFG = (SymbolSet, SymbolSet, String, Symbol)

Now we will de�ne a function that takes such a four-tuple and returns a parser

for its language. Would it be too immodest to call this a `parser generator'?

parsgen :: CFG -> Parser Symbol Tree

parsgen (nontp,termp,bnfstring,start)

= some (bnf nontp termp <@ parsGram) bnfstring start

The sets of nonterminals and terminals are represented by parsers for them.

The grammar is a string in bnf notation. The resulting parser accepts a list of

(terminal) Symbols and yields a parse Tree.

Lexical scanners The parser that is generated accepts Symbols instead of Chars.

If we want to apply it to a character string, this string �rst has to be `tokenized'

by a lexical scanner.

For this, we will make a library function twopass, which takes two parsers:

one that converts characters into tokens, and one that converts tokens into trees.

The function does not need any properties of `character', `token' and `tree', and

thus has a polymorphic type:

twopass :: Parser a b -> Parser b c -> Parser a c

twopass lex synt xs = [(rest,tree)

| (rest,tokens) <- many lex xs

, (_,tree) <- just synt tokens

]

Using this function, we can �nally parse a string from the language that was

described by a bnf grammar:

blockgram = "BLOCK ::= begin BLOCK end BLOCK | ."

block4tup = (upperId, lowerId, blockgram, Nont "BLOCK")

upperId = greedy1 (satisfy isUpper)

lowerId = greedy1 (satisfy isLower)

final = twopass (sp lowerId <@ Term) (parsgen block4tup)

input = "begin end begin begin end end"

This can really be used in a session:

? some final input

Node (Nont "BLOCK") [Node (Term "begin") [], Node (Nont

"BLOCK") [], Node (Term "end") [], Node (Nont "BLOCK")

[Node (Term "begin") [], Node (Nont "BLOCK") [Node (Term

"begin") [], Node (Nont "BLOCK") [], Node (Term "end")

[], Node (Nont "BLOCK") []], Node (Term "end") [], Node

(Nont "BLOCK") []]]

(1061 reductions, 2722 cells)

Exercise 19. We used uppercase and lowercase identi�ers to distinguish between

nonterminals an terminals. If the namespaces of nonterminals and terminals

overlap, we have to adopt other mechanisms to distinguish them, for example

angle brackets around nonterminals and quotes around terminals. How can this

be done?

Exercise 20. Make a parser for your favourite language.

Acknowledgement

I would like to thank Doaitse Swierstra and Erik Meijer for their comments on

a draft of this paper and stimulating ideas.

References

1. R. Bird and P. Wadler, Introduction to Functional Programming. Prentice Hall,

1988.

2. W.H. Burge, `Parsing'. In Recursive Programming Techniques, Addison-Wesley,

1975.

3. Graham Hutton, `Higher-order functions for parsing'. J. Functional Programming

2:323{343.

4. Mark Jones, Gofer 2.30 release notes.

http://www.cs.nott.ac.uk:80/Department/Staff/mpj/.

5. P. Wadler, `How to replace failure by a list of successes: a method for exception

handling, backtracking, and pattern matching in lazy functional languages'. In

Functional Programming Languages and Computer Architecture, (J.P.Jouannaud,

ed.), Springer, 1985 (LNCS 201), pp. 113{128.

6. Philip Wadler, `Monads for functional programming'. In Program design calculi,

proc. of the Marktoberdorf Summer School, (M. Broy, ed.) Springer, 1992.

7. Philip Wadler, `Monads for functional programming'. In Lecture notes of the First

International Spring School on Advanced Programming Techniques, (J. Jeuring,

ed.) Springer, 1995.

Solutions to exercises

1. A symbol equal to a satis�es equality to a:

symbol a = satisfy (==a)

2. As <|> is a lifted version of ++, it is more e�ciently evaluated right associa-

tive.

3. The function just can be written as a list comprehension:

just p xs = [([],v)

| (ys,v) <- p xs

, null ys

]

4. The operator <*> associates to the right, so a <*> b <*> c <*> d really

means

a <*> (b <*> (c <*> d)), which explains the structure of the result.

5. The parser epsilon yields the empty tuple () as parse tree. The function

const Nil is applied to this result, thus e�ectively discarding the empty

tuple and substituting Nil for it. Instead of epsilon <@ const Nil we can

also write succeed Nil.

6. Without parentheses, we obtain open *> (parens <* (close<*>parens)),

and we would only keep the result of the �rst recursive use of the parens

parser.

7. The functions parens and nesting can be written as partial parametriza-

tions of foldparens, by supplying the functions to be used for the �rst and

second alternative:

parens = foldparens Bin Nil

nesting = foldparens (max.(1+)) 0

8. Without the just transformer, also partial parses are reported in the suc-

cesses list

? nesting "()(())()"

[([],2), ("()",2), ("(())()",1), ("()(())()",0)]

? nesting "())"

[(")",1), ("())",0)]

9. The empty alternative is presented last, because the <|> combinator uses

list concatenation for concatenating lists of successes. This also holds for the

recursive calls; thus the `greedy' parsing of all three a's is presented �rst,

then two a's with singleton rest string, then one a, and �nally the empty

result with untouched rest string.

10. We de�ne <:*> as an abbreviation of postprocessing <*> with the list

function:

p <:*> q = p <*> q <@ list

Then we can de�ne

many p = p <:*> many p <|> succeed []

11. The many1 combinator can be de�ned using the many combinator:

many1 :: Parser s a -> Parser s [a]

many1 p = p <*> many p <@ list

12. sequence :: [Parser s a] -> Parser s [a]

sequence = foldr (<:*>) (succeed [])

choice :: [Parser s a] -> Parser s a

choice = foldr (<|>) fail

13. token :: Eq [s] => [s] -> Parser s [s]

token = sequence . map symbol

14. This was chainl:

chainl :: Parser s a -> Parser s (a->a->a) -> Parser s a

chainl p s = p <*> many (s <*> p)

<@ uncurry (foldl (flip ap2))

To obtain chainr, change foldl into foldr, swap flip and fold, change

ap2 into ap1 and reorder the distribution of many over the <*> operators:

chainr :: Parser s a -> Parser s (a->a->a) -> Parser s a

chainr p s = many (p <*> s) <*> p

<@ uncurry (flip (foldr ap1))

The auxiliary functions used are:

ap2 (op,y) = (`op` y)

ap1 (x,op) = (x `op`)

15. Easiest is to do the case analysis explicitly:

integer :: Parser Char Int

integer = option (symbol '-') <*> natural <@ f

where f ([],n) = n

f (_ ,n) = -n

But nicest is to use the <?@ operator, yielding the identity or negation func-

tion in absence or presence of the minus sign, which is �nally applied to the

natural number:

integer :: Parser Char Int

integer = (option (symbol '-') <?@ (id,const negate))

<*> natural

<@ ap

where ap (f,x) = f x

16. A
oating point number is a �xed point number with an optional exponent

part:

float :: Parser Char Float

float = fixed

<*>

(option (symbol 'E' *> integer) <?@ (0,id))

<@ f

where f (m,e) = m * power e

power e | e<0 = 1.0 / power (-e)

| otherwise = fromInteger(10^e)

17. This would be nice:

chainl' p s = q

where q = (option (q <*> s) <?@ (id,ap1))

<*> p <@ ap

Alas, this function will not terminate. . .

18. The symbol s that is parsed is discarded, and an empty list is substituted

for it. Then the function Node s is applied to this empty list, resulting in

Node s [], which is a terminal node in the parse tree.

This article was processed using the L

A

T

E

X macro package with LLNCS style

